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Abstract. We study exclusion statistics within the second quantized approach. We consider
operator algebras with positive definite Fock space and restrict them in a such a way that certain
state vectors in Fock space are forbiddenab initio. We describe three characteristic examples
of such exclusion, namely exclusion on the base space which is characterized by states with
specific constraint on quantum numbers belonging to base spaceM (e.g. the Calogero–Sutherland
type of exclusion statistics), exclusion in the single-oscillator Fock space, where some states in
single-oscillator Fock space are forbidden (e.g. the Gentile realization of exclusion statistics) and
a combination of these two exclusions (e.g. Green’s realization of para-Fermi statistics). For these
types of exclusions we discuss the extended Haldane statistics parametersg, recently introduced
by two of us in 1996 (Mod. Phys. Lett.A 11 3081), and associated counting rules. Within these
three types of exclusions in Fock space the original Haldane exclusion statistics cannot be realized.

1. Introduction

Statistics plays a fundamental role in the description of macroscopic or thermodynamic
phenomena in quantum many-body systems. It is well known that the stability of matter, built
out of protons and electrons, depends crucially on their fermion nature. Also, Bose–Einstein
condensation is essentially responsible for the existence of such effects as superfluidity or
superconductivity.

Attempts to generalize these conventional (i.e. Bose and Fermi) statistics date back to
Gentile’s [1] and Green’s [2] works on parastatistics in the 1940s and 1950s. Since then a
number of papers have been devoted to this topic, culminating in recent years in the discovery
of the fractional quantum Hall effect (FQHE) [3], the theory of anyon superconductivity [4]
and the Haldane generalization of the Pauli exclusion principle [5].

In principle, there are two distinct approaches to generalized statistics. The starting point
of the first approach is some symmetry principle, such as a symmetric group (e.g. parastatistics
[2]), braid group (e.g. anyon statistics [4]) or quantum groups (e.g. quon statistics [6]). It can
also be characterized by either an operator algebra of creation and annihilation operators with
Fock-like representations (second quantization) or monodromy properties of the multiparticle
wavefunction (first quantization). For example, Green’s parastatistics [2] is based on trilinear
commutation relations for particle creation and annihilation operators. For the para-Bose case
of orderp exactly those representations of the symmetric groupSN with at mostp rows
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in the corresponding Young pattern occur, which means that at mostp particles can be in
an antisymmetric state. In contrast, for the para-Fermi case exactly those representations
of the SN with at mostp columns occur, which means that at mostp particles can be in a
symmetric state. Both cases of parastatistics have some kind ofexclusionbuilt in by their
very definition, i.e. botha priori exclude certain irreducible representations (IRREP’s) of the
symmetric group.

The second approach is based on the state-counting procedure. It is characterized by
some Hilbert space of quantum states, generally without a direct connection with creation and
annihilation operators acting on Fock-like space. This class includes the recently suggested
Haldane generalization of the Pauli exclusion principle, interpolating between Bose and Fermi
statistics [5]. The monodromy properties of wavefunctions are not used to define Haldane
statistics and the definition of statistics is independent of the dimension of space. Instead, the
Haldane statistics of a particle [5] is determined by thestatistics parameter g, which for the
case of one species of particles is defined as

g = dN − dN+1N

1N
(1.1)

whereN is the number of particles anddN is the dimension of the one-particle Hilbert space
obtained by keeping the boundary conditions and quantum numbers of(N−1) particles fixed.
For bosons,g = 0 and for fermions, the Pauli principle impliesg = 1.

Alternatively, Wu has defined the exclusion statistics by the interpolating counting formula
[7], which gives the number of all independentN -particle states distributed overM quantum
states described byM independent oscillators

D(M,N, g) = [M + (N − 1)(1− g)!]
N ![M − gN − (1− g)]! . (1.2)

Various aspects of this novel statistics have been investigated [8] and the systems
exhibiting it have been described, including one-dimensional (1D) spinons [5] withg = 1

2,
FQHE quasiparticles [9] and anyonic systems [10] (in particular, anyons in the lowest
Landau level in a strong magnetic field). In addition, the Haldane concept of statistics
applies to the integrable models of Calogero–Sutherland type [11, 12]. There is some
evidence that it can also be helpful in understanding the low-temperature physics of 1D
Luttinger liquids [13] and the models which exhibits the Mott metal–insulator transition
[14]. Although Haldane statistics is defined in an arbitrary number of space dimensions,
it is evident that most of these examples are essentially 1D systems. Also, there are still
some poorly understood or unanswered questions such as what is the microscopic realization
of Haldane statistics or its algebraic and group-theoretical characterization. Furthermore,
is there any connection between Green’s parastatistics and Haldane statistics, since Green’s
parastatistics also interpolates between bosons and fermions and generalizes the Pauli exclusion
principle.

There have been several attempts to use operator methods to realize Haldane exclusion
statistics algebraically [15], but the counting ruleD(M,N, g), calculated for these algebras
(basically of Gentile type) differs from the Haldane–Wu counting rule. In a previous paper
[16] we found that any operator algebra of creation and annihilation operators with a Fock-like
representation could be described in terms ofextendedHaldane statistics parameters. Using
this result, we described para-Fermi and para-Bose statistics as exclusion statistics of Haldane
type and calculated a few extended statistics parameters.

In this paper we continue to study exclusion statistics within the second quantized
approach. We consider various operator algebras with positive definite Fock spaces, which
have the exclusion principle built into them by their very definition and lead to exclusion
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statistics. Since there are many ways to perform such exclusion, we describe three characteristic
ones, namely exclusion on the base space, the Gentile type of exclusion and a combination
of these two exclusions. In section 2 we collect the basic notions of multimode operator
algebras [16, 17] which are necessary for sections 3–5, in which we give several examples of
exclusions mentioned previously. Inspired by exclusion statistics in the Calogero–Sutherland
model [12], in section 3 we define a restricted multimode oscillator algebra of quonic type,
which depends on the parameterλ = p/q and obeys the generalized exclusion principle. We
calculate extended Haldane statistics parameters and discuss the corresponding counting rules
for different values ofp andq. We recover the Haldane–Wu counting formula forq = 1
and integer values ofp. We also briefly mention Fermi and Bose-like exclusion algebras.
In section 4 we discuss Gentile-type algebras, with the common feature that a restriction is
placed on the single-oscillator Fock space. We find that the average value of the extended
Haldane statistics parameters and counting rules differs from the original Haldane parameters
and counting rules, in agreement with the results of Chenet al [15]. In section 5 we discuss
Green’s and Palev’s parastatistics as types of exclusion statistics. Finally, in section 6 we
briefly summarize the main results of the paper.

2. Definition of the multimode oscillator algebras

2.1. Fock space

In this section we briefly review the definition of general multimode oscillator algebras
possessing Fock-like representations and well-defined number operators [16, 17].

We start with Hermitian conjugated pairs of annihilation and creation operators,{ai ,a†
i |i ∈

M}, defined on some base spaceM. We build a Fock-like space starting from the unique
vacuum state|0〉, such that〈0 | 0〉 = 1, ai |0〉 = 0, ∀i ∈M.

An arbitrary multiparticle state can be described as a linear combination of monomial
state vectors(a†

i1
. . . a

†
in
|0〉), and the corresponding Fock spaceFn is given as

Fn =
{∑
i1...in

λi1...ina
†
i1
. . . a

†
in
|0〉 | λi1...in ∈ C

}
. (2.1)

The annihilation operatorsai act on the spaceFn in such a way that

aia
†
j |0〉 = δij |0〉

aia
†
i1
a

†
i2
|0〉 = δii1a†

i2
|0〉 +8i

i1i2;i1δii2a
†
i1
|0〉 (2.2)

and so on [16,17].
The Fock space (and the corresponding statistics) depends crucially on the structure of

the base spaceM on which single oscillators are placed. The simplest base spaceM is the
1D lattice. If the lattice is finite, we can takeM = {1, 2, . . . ,M}. For an infinite lattice we
can haveM = N or Z. In the continuum limit, we haveM ⊆ R. Boundary conditions,
being periodic or not, may also be important for statistics. Furthermore, one can consider a
D-dimensional lattice (finite or infinite) and the corresponding continuum limit, with various
boundary conditions. Finally, for the base space one can consider various manifolds or curved
spaces with non-trivial topological properties which may also have important consequences
for statistics.
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2.2. Algebra

We define thealgebra of creation and annihilation operators as a normally ordered (Wick
ordered) expansion0ij (a†, a) ≡ aia†

j (no symmetry principle is assumed):

0ij ≡ aia†
j = δij +Cija†

j ai +Cijjk,kia
†
j a

†
kakai +Cijjk,ika

†
j a

†
kaiak +Cijkj,ika

†
ka

†
j aiak

+Cijkj,kia
†
ka

†
j akai + · · · (2.3)

whereC’s are scalar coefficients. Notice that there is no need to define any relation between
the creation (e.g.0ij (a†, a†)) or annihilation (e.g.0ij (a, a)) operators as they appear implicitly
as norm zero vectors in Fock space. (For the treatment of the class of Wick ordered multimode
oscillator algebras of the formaia

†
j = δij1 +

∑
k,l C

kl
ij a

†
l ak, see [18].)

We also demand that the algebra (2.3) possesses compatible number operatorsNi such
that [Ni, a

†
j ] = δij a†

i and [Ni, aj ] = −δij ai .

2.3. Matrix of inner productsA(N) and statistics

For anN -particle state (a†
i1
. . . a

†
iN
|0〉) with fixed indicesi1, . . . , iN = 1, 2, . . . ,M, there are

N !/n1!n2! . . . nM ! (in principle different) states obtained by permutationsπ ∈ SN acting on
the state(a†

i1
. . . a

†
iN
|0〉). Here,n1, n2, . . . , nM are eigenvalues of the number operatorsNi ,

satisfying
∑M

i=1 ni = N . From these vectors we form a Hermitian matrixA(N)(i1, . . . , iN )
of their scalar products [16, 17]. As we have already stated, the appearance of null-vectors
implies corresponding relations between monomials ina

†
i and reduces the number of linearly

independent states inπ(a†
i1
. . . a

†
iN
|0〉). The number of linearly independent states is now given

by the rank of the matrixA(N), i.e.di1,···iN = rankA(i1, . . . , iN ).
The set ofdi1,...,iN for all possiblei1, . . . , iN = 1, 2, . . . ,M and all integersN completely

characterizes the statistics and the thermodynamic properties of afree system with the
corresponding Fock space. (Note that the statistics, i.e. the setdi1,...,iN do not uniquely determine
the algebra given by equation (2.3).)

Now, we would like to connect the setdi1,...,iN with the notion of Haldane generalized
exclusion statistics. Following Haldane’s idea [5], we define the dimension of the one-
particle subspace of Fock space keeping the(N −1) quantum numbersi1, . . . , iN−1 inside the
N -particle states fixed:

d
(1)
i1,...,iN−1

=
M∑
j=1

dj,i1,...,iN−1. (2.4)

We point out thatdi1,...,iN andd(1)i1,...,iN−1
are integers, i.e. no fractional dimension is allowed by

definition.
The number of all independentN -particle states distributed overM quantum states

described byM independent oscillators (i = 1, 2 . . . ,M) is given by

D(M,N;0) =
M∑

i1,...,iN=1

di1,...,iN . (2.5)

Note that 06 D(M,N) 6 MN andD(M,N) is always an integer by definition.
The next step is to define the analogue of the Haldane statistics parameterg. Recall that

Haldane introduced the statistics parameterg through the change of the single-particle Hilbert
space dimensiondn, equation (1.1). In a similar way we defineextendedHaldane statistics
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parameters [16]gi1,...,iN−1;j1...,jk through the change of the available one-particle Fock-subspace
dimensiond(1)i1,...,iN−1

, equation (2.4), i.e.

gi1,...,iN−1;j1...,jk =
d
(1)
i1,...,iN−1

− d(1)i1,...,iN−1;j1...,jk

k
. (2.6)

Note that equation (2.6) implies that extended Haldane statistics parameters can be any rational
numbers. Examples of the calculation of the matrixA(N) and extended Haldane statistics
parametersgi1,...,iN−1;j1...,jk for parastatistics are given in [16].

In the following sections, which constitute the core of the paper, we discuss extended
Haldane statistics parameters for various types of generalized exclusion statistics.

3. Restricted algebras and projected Fock spaces

As we have seen, one can define extended Haldane parameters for any algebra. To study
exclusion statistics within the second quantized approach, we start with an operator algebra
and its positive definite Fock space representation. Then we restrict the algebra in a such way
that certain state vectors in Fock space are forbidden, while the rest of Fock space remains
unchanged. There are many ways to perform such exclusions. Here we do not pretend to give
a complete list of all possible exclusions, but we describe and analyse three main classes of
exclusion statistics:

(1) Exclusion on the base spaceM (e.g., the Calogero–Sutherland type of exclusion
statistics) which is characterized by states with a specific constraint on the positions, momenta
or other quantum numbers belonging to the base space (lattice)M. Generally, we can write
(no summation over repeated indices)

aia
†
j a

†
k = 0ij2jka

†
k

where2jk is 0 or 1, depending on whether the simultaneous appearance ofj and k is,
respectively, forbidden or allowed. The creation operators of the above2-restricted algebra,
acting on the vacuum|0〉, formally reproduces all the states of the initial Fock space (2.1) of the
algebra0ij , equation (2.3). However, owing to the appearance of2jk in the above restricted
algebra, monomial states, which do not obey the2jk-restriction, will have zero norm and
effectively disappear from the Fock space leading to the projected Fock space. This can be
easily seen on two particle states (see, e.g., examples 3.4 and 3.5).

(2) Single-oscillator Fock space restrictions or Gentile-type exclusion (e.g., Karabali–Nair
algebra [15] and genons [19]) where some states in single-oscillator Fock spaces are forbidden.
Let a†a = φ(N), aa† = φ(N + 1), N being the number operator with integer eigenvalues
n ∈ N0 andφ(n) > 0 [20].

Then we can restrict the algebra bya†a = φ(N)θ(N), whereθ(N) is 0 or 1, depending
on whether the givenN -particle (excitation) state is forbidden or allowed. The simplest case
[21] is θ(n) = 1, n 6 p andθ(n) = 0, n > p.

(3) Exclusions on the base spaceM and the single Fock space simultaneously, i.e. a
combination of exclusions of the first and second type (e.g., Green’s and Palev’s parastatistics
[2,22]). Generally,

aia
†
j a

†
k = 0ij2jk8(Na)a

†
k

where8(Na) is a function of the number operatorsNa of theath particle. In some cases it
is not necessary to project states out of Fock space, since the algebra itself incorporates such
exclusions, for exampleaia

†
j = 0ij8(N), where8(N) is a functional of the total number

operator such that8(n) > 0, n 6 p, and8(p + 1) = 0.
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3.1. Calogero–Sutherland type of fractional statistics

Let us start with the dynamical Calogero–Sutherland (C–S) model in 1D, a well known example
of exclusion fractional statistics [11, 12]. The Hamiltonian forN particles on a ring of length
L is given by

H = −
N∑
i=1

∂2

∂x2
i

+
∑
i 6=j

2λ(λ− 1)

d2(xi − xj ) (3.1)

where h̄2/2m = 1 and d(x) = (L/2π) sin(πx/L) and λ > 0. The spectrum of this
Hamiltonian is simple and can be expressed in terms of pseudomomentakj , j = 1, 2, . . . , N ,
in the following form

E(k1, . . . , kN) =
N∑
j=1

k2
j (3.2)

wherek1 < k2 < · · · < kN and ki+1 − ki = κ(λ + ni+1), ni+1 ∈ N0, κ = 2π/L and
k1 = κ (λ(N − 1)/2 + n1), implying fractional statistics. The ground-state energy is for
n2 = n3 = · · · = nN = 0 and reads

E(k0
1, . . . , k

0
N) =

N∑
j=1

(k0
j )

2 = π2λ2N(N2 − 1)

3L2
.

The structure of the spectrum of the Calogero model on the 1D line in the harmonic potential
with frequencyω or in a box is similar to (3.2), withκ depending onω or on the sizeL
of the box. Note thatλ = 0 implies bosons (on the momentum lattice in units ofκ) with
ki+1 − ki = κni+1 and the ground energyEB

0 = 0. The valueλ = 1 implies fermions with
ki+1 − ki = κ(1 + ni+1) and ground energyEF

0 > 0. For both free bosons and fermions we
can write the corresponding creation and annihilation operators which satisfy Bose and Fermi
algebras, respectively.

We are inspired and motivated by the relationki+1 − ki = κ(λ + ni+1) to construct the
algebra of creation and annihilation operators characterized byλ > 0, λ ∈ R+. To do this,
we start with the quon algebra [6] of creation and annihilation operatorsai, a

†
i on the real line

satisfying

aia
†
j − qa†

j ai = δij i, j ∈ R. (3.3)

If |q| < 1, the corresponding Fock space is positive definite and for a genericN -particle state
with mutually different indices there are(N !) linearly independent states [23].

Without loss of generality, we can restrict ourselves to the choiceq = 0 [6, 24]. Then
the restricted algebra, of type (1) (i.e. exclusion on the base spaceM), corresponding to the
algebraaia

†
j = δij , becomes

aia
†
j a

†
k = δij2jka

†
k (3.4)

where

2jk =
{

1 if k − j = κ(λ + n)

0 otherwise

with κ > 0, λ > 0, n ∈ N0. The allowedN -particle states in Fock space are of the type
(a

†
i1
. . . a

†
iN
|0〉), i1 . . . iN ∈ R, with iα+1− iα = κ(λ +n), n ∈ N0 (all other states are null states

and hence forbidden). It is obvious thatdi1...iN = 1. If M = R (or an infinite lattice), then
d
(1)
i1...iN
= ∞ and the extended statistics parametersgi1...iN ;j1...jk are not well defined. However,
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it is possible to define these parameters in the following way. We choose theN -particle state
(a

†
i1
. . . a

†
iN
|0〉) and then take the sufficiently large cut-off from the left and from the right, which

includes the givenN -particle state. So, we obtain a finite segment or a finite lattice withM

sites,M � N .
We shall discuss several cases, depending on the values ofλ. The case whenλ = p/q

(p, q ∈ N) is rational is relatively simple. In this case, Ha [12] suggested normalization of
the pseudo-momenta such that the neighbour momenta satisfyiα+1− iα = p + nαq, nα ∈ N0

andM reduces to an infinite lattice,M = Z, with Fermi oscillators placed on each site. For
anN -particle state(a†

i1
. . . a

†
iN
|0〉) the number of blocked oscillators is

Np + (p − 1) +
N−1∑
α=1

1α (3.5)

where

1α =
{
nαq if p 6= q, p 6= 1

nα(p − 1) if p = q.

In particular, ifp = q = 1 onlyN -oscillators are blocked. Note that the casep = q 6= 1
does not correspond to the standard Fermi oscillators, but the group ofp oscillators behaves
like an ordinary Fermi oscillator. Ifp = 1, q 6= 1, thenN oscillators are blocked but internal
oscillators inside the neighbours are strongly correlated.

For the closestN -particle statesn1 = n2 = · · · = nN−1 = 0 and for the finite lattice with
M sites{1, 2, . . . ,M}, we obtain the dimension of the one-particle subspace, equation (2.5),
as

d
(1)
N = 2(i1− p) +

[
i1− p
q

]−
+2(M − i1−Np + 1) +

[
M − i1−Np + 1

q

]−
. (3.6)

Then, it is easy to find extended Haldane statistics parameters, equation (2.6)

gN→N+j = d(1)N − d(1)N+j

=



[
i1− p
q

]−
−
[
i1− 2p

q

]−
if site ‘j is left’[

M − i1−Np + 1

q

]−
−
[
M − i1− (N + 1)p + 1

q

]−
if site ‘j is right’.

(3.7)

Hereafter, [x]± denotes the minimal(+)/maximal (−) integer greater/smaller than a given
numberx, respectively. We observe thatgN→N+j depends onM andp, q as well, and not just
on the ratioλ = p/q. Moreover, there does not exist a limit value whenM →∞. However,
one can define the average value of the statistics parameterḡ for M,M + 1, . . . ,M + q − 1,
sinceg is periodic inM with periodq. We assume thatj is always ‘on the right’ and for
M � Np,M � q we find

ḡN→N+j = 1

q

q∑
α=1

gN→N+j (α) = p

q
= λ. (3.8)

This follows from the identity
q∑
i=1

[
M − i
q

]−
−
[
M − i − p

q

]−
= p p ∈ N0, q ∈ N.
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Similarly, one can findgi1,i2,...,iN ;j for arbitraryN -particle states. They depend onM,p, q and
n1, n2, · · · nN−1. The average valuēg depends generally onp, q andnN . Simple consideration
[12] gives, for generalp, q the Haldane statistics parametergHald

gHald
N→N+1 = lim

M→∞

(
M −Np − (p − 1)−∑N−1

α=1 nα · 2
q

−M − (N + 1)p − (p − 1)−∑N
α=1 nα · 2

q

)
= p

q
+ nN (3.9)

which is variable. The above consideration gives, forp = 1, gHald = 1/q and forp = q,
gHald = 1. Hence, only ifp = 1, λ = 1/q, does the corresponding C–S model have the
Haldane statistics parametergHald = 1/q and ḡ = gHald. Moreover, two statistical models
with the samegHald (for example,gHald = 1) are not the same. Namely, the counting rule
D(M,N;p, q) also depends on bothp andq (not only on the ratioλ = p/q):

D(M,N;p, q) =
M−(N−1)p∑

i=1


[
M − i − p(N − 1)

q

]−
+N − 1

N − 1


= (M − p(N − 1))

(
N − 1 +α

N − 1

)
− q(N − 1)

(
N − 1 +α

N

)
(3.10)

whereα = [(M − 1− p(N − 1))/2]−. The above equation follows from the identity [25]

α−1∑
i=0

(
n + i

n

)
= α

(
n + α

n

)
− n

(
n + α

n + 1

)
=
(
n + α

n + 1

)
with α ∈ N andn ∈ N0.

If p = q,

D(M,N; q, q) = M
(
N − 1 +α

N − 1

)
− q(N − 1)

(
N + α

N

)
(3.11)

with α = [(M − 1)/q]− −N + 1.
Forp = q = 1,

D(M,N; 1, 1) =
(
M

N

)
.

If q = 1,p ∈ N0

D(M,N;p, 1) =
(
M + (1− p)(N − 1)

N

)
(3.12)

and only if q = 1, does equation (3.10) coincide with anad hoc interpolation formula by
Haldane and Wu [5]. The simple interpolation of the above equation is obtained by2jk = 1
if k − j > p and2jk = 0, k − j < p ∈ N, i.e. when a single particle blocksp-units (for
fermions,p = 1). We point out that the casep = 0, q = 1 makes sense and reproduces the
Bose statistics

D(M,N; 0, 1) =
(
M +N − 1

N

)
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but the casep = 0 andq 6= 1 corresponds to a generalized Bose statistics since

D(M,N; 0, q) = M
N − 1 +

[
M − 1

q

]−
N − 1

− q(N − 1)

N − 1 +

[
M − 1

q

]−
N

 .
(3.13)

We note that for fractional values ofλ = p/q, the counting rule, equation (3.10), is completely
different, even asymptotically, from the Haldane–Wu formula.

If the coupling constantλ is anirrational positive number, then the Ha lattice construction
and the counting formula, equation (3.10), cannot be applied. In this case it is more appropriate
to define

gn→n+1 = lim
M→∞
{(M − (n− 1)λ)− (M − nλ)} = λ (3.14)

whereλ is the occupation width of the one-particle state, and the counting rule

D(M,N; λ) =
(
M +N − 1− [(N − 1)λ]+

N − 1

)
. (3.15)

Here we have assumed that the first particle can occupyM-states and that the wholeN -particle
state is smaller thanM. It is interesting to note that ifλ ∈ N0, the last equation coincides
with equation (3.12) and with the Haldane–Wu formula. However, ifλ is not an integer, then
equation (3.15) differs from both (3.12) and the Haldane–Wu formula. Equation (3.14) has the
advantage of being well defined for any realλ > 0 and ifλ = p/q, thenD(M,N) depends
only onλ. In this case, one can define an effective parameterλeff = [(N − 1)λ]+/(N − 1).

Remark. The casep = q = 1 (p = 0, q = 1) corresponds to non-standard fermions (bosons)
since the operatorsa†

i do not satisfy the commutation relations for ordinary fermions (bosons),
although the statistical properties are the same as for ordinary fermions (bosons) withg = 1
(g = 0).

In the following subsections we briefly mention possible generalizations of exclusion
fractional statistics by constructing projected Fock spaces.

3.2. Fermi-like exclusion statistics

Let us define a monotonic series (or a finite set)

X = {xn|0< x1 < x2 < · · · < xn < xn+1 · · ·}.
Then, we can easily generalize the condition, equation (3.4), to

2jk =
{

1 if k − j ∈ X
0 otherwise.

This restriction leads to theN -particle states

a
†
i1
· · · a†

iN
|0〉 iα+1− iα ∈ X.

(The energy dependence oniα, i.e. the dispersion relation, is not specified.) All other states
are null-states. The meaning of these restrictions is that only ordered states survive and that
distances between neighbours are ‘quantized’ according to the ruleiα+1 − iα ∈ X. This
rule generalizes the Pauli exclusion principle and we call the corresponding statisticsX-type
restricted Fermi statistics. The statistics parametersg and the counting rulesD(M,N;X,F)
can be found using the results of [25]. The special case of this statistics is the C–S type of
fractional statistics (section 3.1).
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3.3. Bose-like exclusion statistics

This is, in principle, the same kind of exclusion as in subsection 3.2, but with the only difference
being that in a given state there may be an arbitrarily large number of particles (excitations),
i.e. the2 projector satisfies

2jk =
{

1 if k − j ∈ X⋃{0}
0 otherwise.

The corresponding allowed states are

(a
†
i1
)n1 . . . (a

†
iN
)nN |0〉 n1, . . . , nN ∈ N iα+1− iα ∈ X.

All other states are null-states. The above restrictions lead to theX-restricted Bose statistics.
The counting rule forN -particle states defined onM-neighbouring sites is

D(M,N;X,B) =
N∑
k=1

(
N − 1

k − 1

)
D(M, k;X,F) (3.16)

whereD(M, k;X,F) is the counting rule for theX-restricted Fermi statistics (subsection 3.2).
The factor

(
N−1
k−1

)
follows from the identity after equation (3.10).

BothX-restricted Fermi and Bose statistics are examples of permutation non-invariant
statistics. The special caseX = N reproduces Fermi (Bose) statistics but the algebra of
creation and annihilation operators differs from the ordinary Fermi (Bose) algebra.

3.4. Restricted Fermi algebra

One can start from the permutation invariant Fermi algebraaia
†
j = δij − a†

j ai and restrict it in
different ways. For example

aia
†
j a

†
k = (δij − a†

j ai)2jka
†
k (3.17)

where

2jk =
{

1 if |k − j | > p
0 otherwise.

The creation (annihilation) operators anti-commute as ordinary fermions, whereas the operators
satisfying equation (3.4) have no commutation relations at all. The algebra (3.17) is different
from the algebra (3.4), but their corresponding statistics are the same. The counting rule is
given by equation (3.12).

The opposite example is

2jk =
{

1 if |k − j | 6 p
0 otherwise

which implies that many-particle states satisfy the conditionN 6 p + 1 and all other states are
forbidden.

3.5. Restricted Bose algebra

Starting with the Bose algebraaia
†
j = δij + a†

j ai , we can restrict it to a permutation invariant
form

aia
†
j a

†
k = (δij + a†

j ai)2jka
†
k (3.18)

where2jk is given, for example, as in subsection 3.4.
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In the first example (2jk = 1, |k − j | > p), the creation (annihilation) operators
commute and the corresponding statistics are the same as for the quon-projected construction,
equation (3.4). The second example (2jk = 1, |k − j | 6 p) is equivalent with any of the
(p + 1)-neighbouring Bose oscillators inside the initial lattice.

Generally, one can start with any algebra

aia
†
j = 0ij (a†; a)

restrict it in the following way,

aia
†
j a

†
k = 2jk0ij (a

†; a)a†
k

and proceed as in the above examples. We also note that the restricted Fermi and Bose statistics
can be defined not only on a line, but also on a circle or a lattice with periodic boundary
conditions. A special kind of statistics of this type with

2jk =
{

1 if |k − j | > p
0 otherwise

is given in [26].

Remarks. The construction of the C–S-type fractional statistics and generalization proposed
in subsections 3.2 and 3.3 (but not 3.4 and 3.5) relies crucially on the oriented 1D space (lattice).
However, we point out that this obstacle can be evaded and we suggest some interesting physical
speculations.

If the creation (annihilation) operators are defined onM1 ⊗ M2, whereM1 is D-
dimensional andM2 is 1D space, then one can apply the construction described in subsections
3.2 and 3.3. For example, there can be ordinary bosons and fermions in theM1 direction but
fractional ones in theM2 direction:

aiαa
†
jβa

†
kγ = δαβ(δij ± a†

jβaiα)2βγ a
†
kγ

α, β, γ ∈M2 i, j, k ∈M1

where2βγ is described in subsection 3.4. The whole space is not isotropic, i.e. there is a
preferable directionM2. This is one of the main assumptions for the appearance of generalized
statistics.

4. Gentile-type statistics: restrictions on each single oscillator

Gentile suggested the first interpolation between Bose and Fermi statistics. It is characterized
by the maximal occupation numberm of particles (excitations) in a given quantum box.
The maximal number of many-particle states isNmax = mM. Them states available by
one oscillator can be interpreted as internal degrees of freedom. For a single oscillator,
gn→n+1 = d(1)n − d(1)n+1 = 0 if n + 1< m and 1 ifn + 1= m. Hence,gHald = ḡ = 1/m.

However, if there areM oscillators, theN -particle state is characterized by 1N1 . . .MNM

such that
∑M

i=1Ni = N , Ni 6 m, wherei enumerates oscillators 1, 2, . . . ,M. Alternatively,
we can write 0n01n1 . . . mnm , such that

∑m
α=0 nα = M,

∑m
α=0 αnα = N , wherenα denotes the

number of oscillators withα-particles (excitations). LetNi1 > Ni2 > · · · > Nin , thennα is
the number of boxes (oscillators) withα particles,Nk+1 = Nk+2 = · · · = Nk+nα = α. Then
d
(1)
N = M − nm and

gN→N+i = 1nm = 1 (4.1)
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if ‘ i’ is added to the(m− 1) filling and

gN→N+i = 1nm = 0 (4.2)

if ‘ i’ is added tonα, α 6 m− 2. We find

ḡN→N+1 = nm−1

M − nm . (4.3)

Note that the average value is different from 1/m, even if we perform averaging over different
N (except for the case of the single oscillatorM = 1).

Generally, the Gentile-type statistics can be defined by

aia
†
j = 0ij (a†; a)2(N,m) (4.4)

where2(N,m) > 0 for N 6 m and2(m,m) = 0. The simplest functions with these
properties are step-functions2(N −m) and2(N,m) = 1− (N/m).

As an example, we consider the restricted Bose oscillator

aa† = (1 +a†a)2(m−N) (4.5)

with Fock space spanned by|0〉, a†|0〉, . . . , (a†)m|0〉. This oscillator coincides with the
truncated Bose oscillator with cut-off [21]

aa† = (1 +a†a)− (N + 1) δN,m (4.6)

or aa† = 2(m−N + 1). The counting rule is

D(N,M,m) =
∑

∑
nα=M;

∑
αnα=N

(
M!

n0!n1! . . . nm!

)
DF(M,N) 6 D(M,N,m) 6 DB(M,N). (4.7)

The general properties of the Gentile-type algebra are that: (i) the extended Haldane
parameters are not constant; (ii) the average value of the extended Haldane statistics parameters
differs from 1/m,m ∈ N, except for a single oscillator for whichgn→n+1 = δn,m andḡ = 1/m
for n 6 m; (iii) the counting rule differs from the Haldane–Wu formula form 6= 1; and (iv)
thermodynamic properties are different from the Haldane–Wu thermodynamics [8]. These
results are in agreement with the results obtained by Chenet al [15].

4.1. Karabali–Nair realization of Gentile statistics

All algebras with the Gentile-type statistics satisfy(ai)m 6= 0, but (ai)m+1 = 0 for every
i = 1, 2, . . . ,M, and the statesa†

i a
†
j |0〉 anda†

j a
†
i |0〉, i 6= j , describe the same physical state.

Karabali and Nair constructed a special type of Gentile statistics in one dimension which is
also of anyonic type. The corresponding statistics has all the properties of Gentile statistics
and differs from the original Haldane statistics.

The simplest algebra with Gentile statistics in one dimension is of the form [17, 27]

aia
†
j − eiλsgn(i−j)a†

j ai = 0 λ = ± 2π

m + 1
m ∈ N. (4.8)

For this algebra, we haveaia
†
i = 8(Ni), 8(n) = sin(nλ/2)/ sin(λ/2) > 0 for n < m and

8(m + 1) = 0.

Remarks. If the boxes are filled with a small number of particles, after adding a few new
particles, the system behaves like a Bose system. In contrast to this, if all boxes are filled with
(m − 1) particles the system behaves like a Fermi system. For Gentile statistics for a large
number of statesgN→N+i = 0 and for someN -particle statesgN→N+i > 0.
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Finally, let us mention that besides the ‘local’ restrictions described in this paper, there are
‘global’ restrictions on Fock space. Examples are Green’s para-Bose and para-Fermi statistics
[2] of orderp, which can be realized through projections of complete quon Fock space [26]
and parastatistics in which only states withN 6 N0 particles are allowed [22], regardless of
their local structure.

5. Exclusions on the base space and single-oscillator Fock space

The construction of exclusion statistics performed in the preceding sections can be combined to
include restrictions between neighbours, as well as the cut-off of single oscillators.We present
two examples of such exclusions, which include parastatistics introduced by Palev [22, 28].
Consider the algebra

aia
†
j a

†
k = f (N)(δij − a†

j ai)a
†
k (5.1)

with f (n) > 0, n < p and f (p) = 0. The simplest choice is the step function
f (N) = 2(p −N) (2(x) = 0, x 6 0 and2(x) = 1, x > 0).

We point out that the corresponding statistics is Fermi statistics restricted up toN 6 p

N -particle states. Hence, the counting rule is simply

DF(M,N) =
(
M

N

)
, N 6 p

andDF(M,N) = 0 if N > p. The above statistics is characterized by the Haldane statistical
parameterg = 1

gn→n+k = dn − dn+k

k
= (M − n + 1)− (M − n− k + 1)

k
= 1 (5.2)

if n + k 6 p. If n + k = p + 1, thengn→n+k = (M − n + 1)/(p − n + 1), n = 1, 2, . . . , p
is fractional butg is not constant any more. Hence, this is not an example for the original
Haldane statistics for which the statistics parameter isg = constant. Moreover, the above
statistics is also not the statistics of Karabali–Nair type, wherea

p

i 6= 0, ap+1
i = 0, and for any

N 6 Mp theN -particle state is allowed, since we already havea2
i = 0 andN 6 p.

The second example is the Bose counterpart of the algebra (5.1), namely

aia
†
j a

†
k = f (N)(δij + a†

j ai)a
†
k (5.3)

with f (n) > 0,n < p andf (p) = 0. The simplest choice is the step function mentioned after
equation (5.1) orf (N) = 1− (N/p). The corresponding statistics is Bose statistics restricted
toN -particle states withN 6 p. Hence, the counting rule is simply

DB(M,N) =
(
M +N − 1

N

)
N 6 p andDB(M,N) = 0 if N > p. Therefore, the above statistics is characterized by the
Haldane statistics parameterg = 0

gn→n+k = dn − dn+k

k
= M −M

k
= 0 (5.4)

if n+k 6 p. If n+k = p+ 1, thengn→n+k = M/(p−n+ 1), n = 1, 2, . . . , p, is fractional but
not constant. Hence, this is not an example of the original Haldane exclusion statistics. The
above statistics is also not of Karabali–Nair type, sincea

p

i 6= 0, ap+1
i = 0 butN 6 p. This

would be equivalent only for the single-mode oscillator,M = 1.
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Let us mention that Green’s para-Fermi statistics [2] of orderp ∈ N is also an example
of this kind of exclusion statistics since at mostp particles can occupy a given quantum state,
a
p+1
i = 0. For a single oscillatorap+1 = 0, the extended statistical parameters aregi→j = 0

for j 6 p andgi→p+1 = 1/(p + 1− i).
In recent papers [16, 28], we have discussed these algebras and statistics in more detail.

6. Summary

In previous papers [16, 28], we defined the extended Haldane statistics parametersg, (see
equation (2.6)) and the counting rulesD(M,N;0) (see equation (2.5)), for the generalized
statistics formulated in the second quantized approach.

In this paper, we have proposed and further analysed three types of exclusion statistics,
namely, the Calogero–Sutherland (C–S) type, the Gentile type and a combination of these two
types of exclusion statistics.

We have started with the multimode oscillator algebra0ij , equation (2.3), with positive
definite Fock space. Introducing the appropriately defined step function2jk, we have restricted
the algebra0ij in such a way that certain states in the Fock space of the algebra0ij are forbidden,
i.e. they have zero norms by construction.

The realization of the C–S type of exclusion statistics relies on the quon algebra,
equation (3.3), and on the restriction between neighbour oscillators (placed on the 1D
lattice), induced by the step function, equation (3.4). For this type of statistics, we have
calculated extended statistics parametersg for the finite lattice, equation (3.7), and the
infinite lattice, equation (3.9). We have also defined and calculated the average value
of the extended statistics parameters, equation (3.8). Furthermore, we have calculated
the counting rule, equation (3.10), and discussed its dependence on the parametersp and
q, equations (3.11)–(3.13). In subsections 3.2–3.5, we have briefly described the possible
generalization of the above procedure.

As an example of the Gentile type of exclusion statistics, we have considered the Bose-like
algebra with(a†)m+1 = 0 and the step function2(m−N), equation (4.5). This is a restriction
in the single-oscillator Fock space. We have found that the extended statistics parameters are
not constant and that the counting rule differs from the Haldane–Wu formula. We have also
mentioned the Karabali–Nair realization of the Gentile statistics.

Finally, we have described the combination of these two exclusions. As an example, we
discussed parastatistics, equations (5.1) and (5.2). We have found that the extended statistics
parameters are fractional but not constant.

None of the examples of exclusion presented here include the original Haldane proposal
[5]. As we stressed before [16], it seems that the original Haldane statistics cannot be realized
in the above sense, i.e. one cannot define the underlying operator algebra of creation and
annihilation operators with positive Fock space and satisfy Haldane’s requirements (fractional
and constantg), exceptfor free bosons and fermions. One should recall that the Haldane
fractional exclusion statistics arises because the system is aninteractingsystem and particles
are topological excitations of a condensed matter state, rather than real particles which can
exist outside the finite region of condensed matter. Hence, our analysis confirms the Haldane
statement that the techniques of the second-quantized many-body theory cannot be applied to
this type of exclusion statistics.
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